
Lecture 19 - Nov. 14

Inheritance

Polymorphism vs. Dynamic Binding
Type Casts: Named vs. Anonymous
Casts: Compilable vs. ClassCastException

Announcements/Reminders

• WrittenTest2 results to be released by Monday
• Lab4 due tomorrow at noon
• Lab5 to be released tomorrow
• ProgTest3 next Wednesday, November 20
+ Lab4 grading tests
+ Lab4 solution video

• Bonus Opportunity coming: Formal Course Evaluation

A

A oa = …;
? ob = …;
oa = ob;

Rules of Substitutions
neitherancestorea - ancestors of

AsParent efulfill-St
ofOfDE #

they ofA serve
as the

in
order forcompileNext,

car
of A

~ ↑ descendentfill the
substitutiontht & - that

can

whatlawstatic
a *... expottycanfrea ob)
X.. GS

↳andat * that is , any
descendant class
of A

Rules of Substitutions (1)

Declarations:
IOS sp1;
IPhoneSE sp2;
IPhone13Pro sp3;

Substitutions:
sp1 = sp2;
sp1 = sp3;

↓

compiles
i sp2s
STIPSE↑ is a

descendant
of spl's
ST IOS

Rules of Substitutions (2)

Declarations:
IOS sp1;
SmartPhone sp2;

Substitutions:
sp1 = sp2;X

Rules of Substitutions (3)

Declarations:
IOS sp1;
HuaweiP50Pro sp2;

Substitutions:
sp1 = sp2;

T st of SplX CIOS)

ST of soPcesS

Visualization: Static Type vs. Dynamic Type

Declaration:
Student s;
Substitution:
s = new ResidentStudent(“Rachael”);

Static Type: Expectation
Dynamic Type: Accumulation of Code

->
ST

Ti

DT

ST

Change of Dynamic Type (1.1)

Example 1:
Student jim = new ResidentStudent(...);
jim = new NonResidentStudent(...);

ecompiles" RS can fulfill the exp of Jim's ST (Student)

RS isadescenda
& DT of jim : RS

DT of jim : NRS

Change of Dynamic Type (1.2)

Example 2:
ResidentStudent jeremy = new Student(...);"

: Student isne of
ST of Jeremy
CRS).

Change of Dynamic Type: Exercise (1)

Exercise 1:
Android myPhone = new HuaweiP50Pro(...);
myPhone = new GalaxyS21(...);

Pisto
↑
7
DT : GSzl

Change of Dynamic Type: Exercise (2)

Exercise 2:
IOS myPhone = new HuaweiP50Pro(...);
myPhone = new GalaxyS21(...);

X

X

Change of Dynamic Type (2.1)

Given:
Student jim = new Student(...);
ResidentStudent rs = new ResidentStudent(...);
NonResidentStudent nrs = new NonResidentStudent(...);

Example 1:
jim = rs;
println(jim.getTuition());
jim = nrs;
println(jim.getTuition());

-> DT : RS- versiois (4)

&
> DTiNRS-> versi NRS (dr).

Change of Dynamic Type (2.2)

Given:
Student jim = new Student(...);
ResidentStudent rs = new ResidentStudent(...);
NonResidentStudent nrs = new NonResidentStudent(...);

Example 2:
rs = jim;
println(rs.getTuition());
nrs = jim;
println(nrs.getTuition());

X

Polymorphism and Dynamic Binding
Polymorphism:
An object’s static type may allow multiple possible dynamic types.
⇒ Each dynamic type has its version of method.

Dynamic Binding:
An object’s dynamic type determines the version of method being invoked.

Student jim = new ResidentStudent(...);
jim.getTuition();
jim = new NonResidentStudent(...);
jim.getTuition();

SmartPhone sp1 = new IPhone13Pro(...);
SmartPhone sp2 = new GalaxyS21(...);
sp1.surfWeb();
sp1 = sp2;
sp1.surfWeb();

-> polymorphismaSmartphone
T
-> changes splsD PEP to l T

-

-

T
↓
DT: GS2

Type Cast: Motivation

~
X

-> RS

Student Jim
RS vS

Pu

MyClass.java

s last DT of s

An A+ Challenge: Inferring the DT of a Variable

Your Program

class MyClass {
 main (...)
 Student s = ...;
 ...
 s = new ResidentStudent(...);
 }
}

undecidable

-

Anatomy of a Type Cast
Student jim = new ResidentStudent(“Jim”);

ResidentStudent

pr

Student jimi
RS uS

Type Cast: Named vs. Anonymous

Exercise
~

&

↓ alias of ST: IPBPro

nopilablea

Compilable Casts: Upwards vs. Downwards

Android myPhone = new GalaxyS21Plus();

SmartPhone sp = (SmartPhone) myPhone;

GalaxyS21Plus ga = (GalaxyS21Plus) myPhone;

dial
surfWeb

facetime
quickTake
zoomage

skype
sideSync

sp myPhone ga
Expectations

#
upward casting

downwing

Compilable Type Cast May Fail at Runtime (1)

cast type
~

v - - -> at RisfastException
2. DT NRS cannot ↓
fulfill the expacaExitodownwardadentius -> NRS

Runtime im
->

1 vs is expected to be

used as RS Rut
RS

